

User interfaces in computer-assisted and robot-assisted surgery

Jesús Ortiz Leonardo S. Mattos Darwin G. Caldwell

Department of Advanced Robotics Istituto Italiano di Tecnologia via Morego, 30, 16163 Genova

User interfaces in computer-assisted and robot-assisted surgery BioRob 2012. June 24th, 2012 Roma, Italy

Surgery	Visualization	Control
Traditional	Direct	Direct
Microsurgery	Microscope	Direct (micromanipulator)
Computer-assisted	Any	Direct
Robot-assisted	Any	Teleoperation

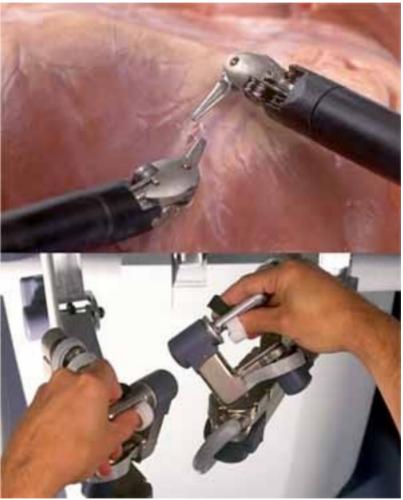
Application of computer and robot assisted surgery:

- Surgery,
- Diagnosis,
- Planning,
- Training.

In traditional surgery, the dexterousness of the doctor important. In robot-assisted surgery, the interface is critical.

iit Minimally Invasive Surgery (MIS)

Advantages:


- Reduces tissue trauma,
- Reduces blood loss,
- Faster recovering,
- Shorter hospital stays.

Disadvantages:

- More complex setup,
- Extensive surgical training.

iit Da Vinci

iit Medical robots research

- System architecture, Software design, Mechanical design, Imaging compatible designs, Safety,
- User interface [Cleary et al, 2001]:
 - What is a suitable user interface for a medical robot?
 - Should the robot be given a commanded path or volume and then autonomously carry out the task?
 - Is a joystick or push button interface appropriate?
 - Or would the physician rather manipulate the tool directly with the assistance of the robot?
 - Is force feedback required for a high fidelity user interface?

iit Diagnosis, planning and training

- Diagnosis [Abolmaesumi et al, 2001]:
 - Devices and GUI (Augmented information).
- Planning [Seitel et al, 2009]:
 - Image based interface for Computer Tomography (CT). Imaging system integrated with the interface
 → Reduce planning time and number of CT scans.
- Training [Vuskovic et al, 2000] [Robb et al, 1996] [Syed et al, 2011] [Xianjun et al, 2010]:

- VR, simulation of real tissue, force feedback.

iit Force feedback

- Commonly used in research in computer-assisted and robot-assisted surgery but not too much in real systems.
- Research to study the effect of using force feedback [Wagner et al, 2007]:
 - It reduces the applied force in experienced and inexperienced people.
 - Only benefit from the trial point of view for experienced people.

iit Control

- Try to increase the precision and usability.
- Novel control methods [Nishikawa et al, 2003]:
 - Face tracking system for controlling the position of the laparoscope → Hands free, natural control.
- Control in phono-microsurgery:
 - Robot system with force feedback [Wang et al, 2005].
 - Virtual scalpel (stylus on tablet) compared with other controls: micromanipulator, joystick, etc [Dagnino et al, 2011].

iit Tactile feedback

- Relatively new in medical robotics.
- Influence of the tactile feedback in the grasping force [Culjat et al, 2008] [King et al, 2009]:
 - FlexiForce sensors on Da Vinci.
 - Transmitted to the doctor through a haptic interface with 5 force levels.
 - Less applied force.
- Vibration patterns to transmit information [Nishino et al, 2011].
- Vibration to simulate roughness [Yamauchi et al, 2009].

iit Sensory fusion and substitution

- Render the sensory inputs in the corresponding senses [Chou et al, 2001]:
 - Maximize information.
 - Reduce cognitive overload.
 - Increase operator performance.
- Sensory substitution with soft-haptics [Liu et al, 2001]:
 - Render distance and collision information using color coding.
 - Simpler interface and communication system.
 - Higher training periods.

iit Conclusions (1/3)

- Three main areas:
 - Display (VR, 3D reconstruction and rendering, etc).
 - Control devices (3D joysticks, tracking, etc).
 - Feedback (force and tactile).
- The combination of the three of them to maximize the information flow maintaining a low cognitive load.
- Other important things: Transmission, rendering, etc.
- Solution: Trade-off between information and technical requirements.

iit Conclusions (2/3)

- Robot with limited DOFs:
 - Maximize the use of the DOFs.
 - Natural control. A motion in the interface corresponds with a motion in the robot.
 - Improve traditional methods (stylus).
- Visualization:
 - Limitations of the cameras (position, resolution, framerate, etc).
 - Improvements respect traditional (light frequencies, augmented reality, etc).

iit Conclusions (3/3)

- Replicate the traditional surgery controls and visualization (approach of Da Vinci):
 - More natural control:
 - Shorter training period.
 - Better acceptance.
 - Not always the best solution.
 - And new generations are more suitable to accept novel user interfaces.

Any question?