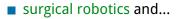
Loris Fichera

Istituto Italiano di Tecnologia Department of Advanced Robotics


June 24, 2012

Outline

Introduction

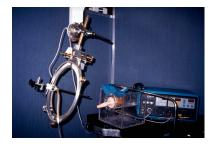
History of surgical robotics

The age of pioneers (~1980's)

Need for robots in the operating room?

- better accuracy
- reduced tremor

History of surgical robotics


The age of pioneers (~1980's)

Need for robots in the operating room?

- better accuracy
- reduced tremor

First clinical applications:

- brain surgery (Y. Kwoh)
- prostate resection (*B. Davies*)
- hip replacement (*R. Taylor*)

History of surgical robotics

The age of pioneers (~1980's)

Need for robots in the operating room?

- better accuracy
- reduced tremor

First clinical applications:

- brain surgery (Y. Kwoh)
- prostate resection (*B. Davies*)
- hip replacement (R. Taylor)

Robots help surgeons in doing tasks better than either can do alone

L Introduction

History of surgical robotics

The age of ASRs (~1990's)

Early promise of medical robotics failed to materialise ¹

¹B. Davies, *Robotic Surgery: From autonomous systems to intelligent tools*, 2007.

History of surgical robotics

The age of ASRs (~1990's)

Early promise of medical robotics failed to materialise ¹

acceptance

- who is in control of the procedure?
- surgeons feel unease at being passive observers

¹B. Davies, *Robotic Surgery: From autonomous systems to intelligent tools*, 2007.

└─ History of surgical robotics

The age of ASRs (~1990's)

Early promise of medical robotics failed to materialise ¹

- acceptance
 - who is in control of the procedure?
 - surgeons feel unease at being passive observers
- 2 high costs
 - medical robots are expensive! (think about safety)
 - no clear economical advantage

¹B. Davies, *Robotic Surgery: From autonomous systems to intelligent tools*, 2007.

History of surgical robotics

The age of ASRs (~1990's)

Early promise of medical robotics failed to materialise ¹

- acceptance
 - who is in control of the procedure?
 - surgeons feel unease at being passive observers
- 2 high costs
 - medical robots are expensive! (think about safety)
 - no clear economical advantage

Do we really need surgical robots?

¹ B. Davies, *Robotic Surgery: From autonomous systems to intelligent tools*, 2007.

-Introduction

History of surgical robotics

From ASRs to intelligent tools (2000 – today)

- no more Autonomous Surgical Robots (ASRs)
- robots are not intended to replace the surgeon
- intelligent tools at the direct command of the surgeon
- augment a surgeon's ability

Artificial Intelligence and Surgical Robotics

Artificial Intelligence and Surgical Robotics?

Can AI help in making surgical robots more intelligent ?

Artificial Intelligence and Surgical Robotics

Artificial Intelligence and Surgical Robotics?

Can AI help in making surgical robots more intelligent ?

Classic AI limitations:

- no awareness
- the real world problem
- what about unexpected circumstances?

Artificial Intelligence and Surgical Robotics

-Weak AI

Computers are superior in

- acquire/process huge amounts of *quantitative* informations
- integrate many data sources

Let's exploit such abilities to approach open problems!

²also known as *Synthetic AI*

Artificial Intelligence and Surgical Robotics

-Weak AI

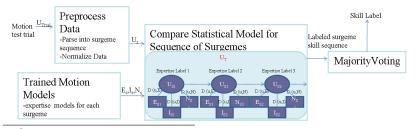
Objective evaluation of surgical performance

Is it possible to model a surgeon's expertise?

⁴C.E. Reiley et al., Decomposition of robotic surgical tasks: an analysis of subtasks and their correlation to skill

³ S. Sinigaglia et al., Defining metrics for objective evaluation of surgical performances in laparoscopic training

Artificial Intelligence and Surgical Robotics


-Weak AI

Objective evaluation of surgical performance

Is it possible to model a surgeon's expertise?

Yes, by means of Hidden Markov Models (HMM)! ^{3 4}

- 1 record the motions of skilled surgeons
- 2 train an HMM over the recorded signals
- 3 use the model for prediction

istituto

italiano di

³ S. Sinigaglia et al., Defining metrics for objective evaluation of surgical performances in laparoscopic training

⁴C.E. Reiley et al., Decomposition of robotic surgical tasks: an analysis of subtasks and their correlation to skill

Artificial Intelligence and Surgical Robotics

└─ Future prospects

Towards energy-directed systems

*Future surgical robots will be energy directed rather than mechanical instruments*⁵

⁵R.M. Satava, *Future directions in robotic surgery*

Artificial Intelligence and Surgical Robotics

└─ Future prospects

Towards energy-directed systems

*Future surgical robots will be energy directed rather than mechanical instruments*⁵

Untangible physical effects:

- laser
- ultrasound
- etc.

⁵R.M. Satava, *Future directions in robotic surgery*

- Artificial Intelligence and Surgical Robotics
 - Future prospects

The Microralp project

Micro-technologies and systems for robot-assisted laser *phonomicrosurgery*.

- treatment of vocal cords lesions
- laser as surgical tool

Open problems:

- how much energy delivered to the surgical site?
- how to minimize the thermal stress of the tissue?
- how to minimize carbonization?
- choice of laser parameters?

- Artificial Intelligence and Surgical Robotics
 - Future prospects

The Microralp project

An artificial cognitive system can help!

- learn and predict changes of the surgical site
- generate alarms when dangerous situations are detected

changes in laser power or focus estimation of tissue temperature is above a safe threshold provide an objective evaluation (nice extra!)

Artificial Intelligence and Surgical Robotics

└─ Future prospects

Hierarchical Temporal Memory ⁶

Seems a promising technology because

combines together well-established approaches

neural networks, probabilistic reasoning, HMM, deep architectures

⁶J. Hawkins and D. George, *Towards a mathematical theory of cortical micro-circuits*, 2009.

Artificial Intelligence and Surgical Robotics

Future prospects

Hierarchical Temporal Memory ⁶

Seems a promising technology because

combines together well-established approaches

neural networks, probabilistic reasoning, HMM, deep architectures

- able to integrate various sources of information
- explicit use of time during learning

ability to learn temporal sequences!

- predict future inputs
- detect unexpected patterns

⁶J. Hawkins and D. George, *Towards a mathematical theory of cortical micro-circuits*, 2009.

- Conclusion

Surgical robots

- becoming specialized, intelligent tools
- of the future likely to be energy-directed systems

Weak AI approaches

- proved to be effective for modeling surgical expertise
- can help in reducing the cognitive overload

Contacts

- S http://microralp.eu
- Ioris.fichera@iit.it
- 🕒 @lorisfichera

Questions?

